3.345 \(\int \frac{\sqrt{a+a \cos (c+d x)}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=136 \[ \frac{a \sin (c+d x)}{2 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{3 \sqrt{a} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{4 d}+\frac{3 a \sin (c+d x)}{4 d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

[Out]

(3*Sqrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(4*d
) + (a*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(3/2)) + (3*a*Sin[c + d*x])/(4*d*Sqrt[a + a*Co
s[c + d*x]]*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.226686, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {4222, 2770, 2774, 216} \[ \frac{a \sin (c+d x)}{2 d \sec ^{\frac{3}{2}}(c+d x) \sqrt{a \cos (c+d x)+a}}+\frac{3 \sqrt{a} \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{4 d}+\frac{3 a \sin (c+d x)}{4 d \sqrt{\sec (c+d x)} \sqrt{a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Cos[c + d*x]]/Sec[c + d*x]^(3/2),x]

[Out]

(3*Sqrt[a]*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(4*d
) + (a*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]]*Sec[c + d*x]^(3/2)) + (3*a*Sin[c + d*x])/(4*d*Sqrt[a + a*Co
s[c + d*x]]*Sqrt[Sec[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2770

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(2*n*(b*c + a*d)
)/(b*(2*n + 1)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+a \cos (c+d x)}}{\sec ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \cos (c+d x)} \, dx\\ &=\frac{a \sin (c+d x)}{2 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{1}{4} \left (3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)} \, dx\\ &=\frac{a \sin (c+d x)}{2 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{3 a \sin (c+d x)}{4 d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}+\frac{1}{8} \left (3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{a+a \cos (c+d x)}}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{a \sin (c+d x)}{2 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{3 a \sin (c+d x)}{4 d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}-\frac{\left (3 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-\frac{x^2}{a}}} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac{3 \sqrt{a} \sin ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{4 d}+\frac{a \sin (c+d x)}{2 d \sqrt{a+a \cos (c+d x)} \sec ^{\frac{3}{2}}(c+d x)}+\frac{3 a \sin (c+d x)}{4 d \sqrt{a+a \cos (c+d x)} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.256725, size = 111, normalized size = 0.82 \[ \frac{\sqrt{\cos (c+d x)} \sec \left (\frac{1}{2} (c+d x)\right ) \sqrt{\sec (c+d x)} \sqrt{a (\cos (c+d x)+1)} \left (3 \sqrt{2} \sin ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )+2 \left (2 \sin \left (\frac{1}{2} (c+d x)\right )+\sin \left (\frac{3}{2} (c+d x)\right )\right ) \sqrt{\cos (c+d x)}\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Cos[c + d*x]]/Sec[c + d*x]^(3/2),x]

[Out]

(Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*(3*Sqrt[2]*ArcSin[Sqrt[2]*S
in[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*x]]*(2*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(8*d)

________________________________________________________________________________________

Maple [A]  time = 0.536, size = 169, normalized size = 1.2 \begin{align*} -{\frac{\cos \left ( dx+c \right ) \left ( -1+\cos \left ( dx+c \right ) \right ) ^{3}}{4\,d \left ( \sin \left ( dx+c \right ) \right ) ^{6}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( 2\,\sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}\cos \left ( dx+c \right ) +3\,\sin \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+3\,\arctan \left ({\frac{\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) }\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}} \right ) \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{-{\frac{3}{2}}} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(1/2)/sec(d*x+c)^(3/2),x)

[Out]

-1/4/d*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^3*(2*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*c
os(d*x+c)+3*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+3*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
/cos(d*x+c)))/(1/cos(d*x+c))^(3/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)/sin(d*x+c)^6

________________________________________________________________________________________

Maxima [B]  time = 2.03035, size = 1430, normalized size = 10.51 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) - (cos(2*d*x + 2*c) - 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*
x + 2*c))) + sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c) -
 2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c))) - cos(2*d*x + 2*c) + 2)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) +
 3*sqrt(a)*(arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(
sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x +
 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*
c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*
x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c)
+ 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d
*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c)))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*
c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x + 2*c)^2 + si
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (co
s(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c) + 1)) - 1)))/d

________________________________________________________________________________________

Fricas [A]  time = 1.70987, size = 308, normalized size = 2.26 \begin{align*} -\frac{3 \, \sqrt{a}{\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac{\sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{\sqrt{a \cos \left (d x + c\right ) + a}{\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{4 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/4*(3*sqrt(a)*(cos(d*x + c) + 1)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)))
- sqrt(a*cos(d*x + c) + a)*(2*cos(d*x + c)^2 + 3*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c
) + d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \left (\cos{\left (c + d x \right )} + 1\right )}}{\sec ^{\frac{3}{2}}{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(1/2)/sec(d*x+c)**(3/2),x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))/sec(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \cos \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(1/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*cos(d*x + c) + a)/sec(d*x + c)^(3/2), x)